
ML-SGFEM User Guide

Papanikos, Georgios and Powell, Catherine E.

2022

MIMS EPrint: 2022.8

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

ML-SGFEM User-Guide∗

Georgios Papanikos†, Catherine E. Powell‡

version 1.0 30th May 2022

Contents

1 Background & Development 2

2 Installation 2

3 Software Description 3

4 Sample Session 6

A Appendix: Test Problems 11

B Appendix: Directory Structure 12

∗This work was partially supported by the EPSRC under grant EP/V048376/1.
†Dept. of Mathematics, University of Manchester. Email: George.Papanikos@manchester.ac.uk.
‡Dept. of Mathematics, University of Manchester. Email: Catherine.Powell@manchester.ac.uk.

1

1 Background & Development

ML-SGFEM is an acronym that stands for Multilevel Stochastic Galerkin Finite Element
Method. The software package ML-SGFEM is a toolbox for MATLAB that implements the
adaptive multilevel SGFEM solution methodology for parametric elliptic PDEs that was
developed in the following works

• Adam J. Crowder. Adaptive & Multilevel Stochastic Galerkin Finite Element Meth-
ods, Ph.D Thesis, Department of Mathematics, University of Manchester, 2020.
https://www.research.manchester.ac.uk/portal/files/159166686/FULL TEXT.PDF.

• A.J. Crowder, C.E. Powell, and A. Bespalov. Efficient adaptive multilevel stochastic
Galerkin approximation using implicit a posteriori error estimation. SIAM J. Sci. Com-
put., 41(3), A1681-A1705 (2019), https://doi.org/10.1137/18M1194420.

The distinctive feature of the software is the hierarchical a posteriori error estimation
strategy it uses to drive the adaptive enrichment of the approximation space at each step.

The ML-SGFEM toolbox provides an update of the S-IFISS software1 that was developed
by Alex Bespalov, David Silvester and Catherine Powell to accompany the earlier work

• A. Bespalov, C. E. Powell, and D. Silvester. Energy norm a posteriori error estima-
tion for parametric operator equations. SIAM J. Sci. Comput., 36(2), A339–A363
(2014), https://doi.org/10.1137/130916849.

However, the new software does not require any other MATLAB toolboxes. The pre-
cursor S-IFISS software implements a simpler ‘single-level’ stochastic Galerkin method.
For certain test problems, the multilevel method embedded in the ML-SGFEM software
achieves superior convergence rates. The ML-SGFEM software also allows the user to change
more settings within the solution algorithm to investigate the impact of those settings on
accuracy, convergence and computational efficiency.

For novices, as well as for experienced scientists familiar with ‘non-intrusive’ multilevel
sampling schemes, this toolbox provides a user-friendly environment for learning about
multilevel intrusive methods. The initial code was written by Adam J. Crowder in 2019
during his PhD studies at the University of Manchester, supervised by Catherine Pow-
ell, building on the earlier S-IFISS code. Extra functionality was provided by Georgios
Papanikos, as part of the EPSRC-funded project EP/V048376/1 on Multilevel Intrusive
Methods, to produce the current (version 1.0) ML-SGFEM toolbox.

The toolbox is compatible with MATLAB version R2017b or later. It is provided
open-source and can be run on Windows, Unix and Mac systems. It can be redistributed
and/or modified under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License, or any later version. It
is distributed in the hope that it will be useful, but without any warranty; and without
even the implied warranty of merchantability or fitness for a particular purpose. See the
GNU Lesser General Public License for more details. Use or distribution of the ML-SGFEM

toolbox or any derivative code implies agreeing to this License.

2 Installation

The toolbox can be downloaded from https://github.com/ceapowell/ML-SGFEM. Af-
ter uncompressing the file, the user should launch MATLAB, navigate to the folder
stoch diffusion multilevel and then type helpme at the command prompt. The fol-
lowing instructions will appear on screen.

1https://personalpages.manchester.ac.uk/staff/david.silvester/ifiss/sifiss.html

2

>> helpme

To run the software in MATLAB:

1. You should have installed MATLAB version >= 2017b

2. If you have installed IFISS, S-IFISS or T-IFISS, remove from search path

3. Change current working directory to ../stoch_diffusion_multilevel

4. Change the path in gohome.m to the current working directory

5. Type setpath at command prompt to add folders/files to current path

6. Run driver ML_adapt_SGFEM_pc.m (Windows) or ML_adapt_SGFEM.m (Mac/Linux)

7. Select a test problem and follow instructions on screen.

3 Software Description

The ML-SGFEM software can be used to numerically solve a class of parametric elliptic
PDEs. In this Section, we briefly define the problem class and give an outline of the
numerical solution approach. Further details can be found in the references in Section 1.

Let D ⊂ Rd, d = 2, 3 be a bounded Lipschitz polygon (the spatial domain) and let
y1, y2, . . . be a countable sequence of parameters with ym ∈ Γm := [−1, 1] for each m ∈ N
so that y = (y1, y2, . . .) ∈ Γ := Γ1 × Γ2 × · · · =

∏∞
m=1 Γm (the parameter domain). We

consider the following parametric diffusion problem : find u : D × Γ→ R such that{
−∇ · (a(x,y)∇u(x,y)) = f(x), on D × Γ,

u(x,y) = 0, on ∂D × Γ,
(1)

where f ∈ H−1(D) and the diffusion coefficient is a parametric function of the form

a(x,y) = a0(x) +

∞∑
m=1

am(x)ym, (x,y) ∈ D × Γ. (2)

We assume that there exist real and positive constants amin and amax such that

0 < amin ≤ a(x,y) ≤ amax <∞ a.e. D × Γ (3)

and that each parameter ym is the image of a uniformly distributed random variable
ξm(ω) ∼ U(−1, 1) with associated probability measure πm. We further assume that the ξm
are independent so that the associated joint probability measure is π(y) =

∏∞
m=1 πm(ym).

Defining the function space

V := L2
π(Γ, H1

0 (D)) :=

{
v : D × Γ→ R :

∫
Γ
‖v‖2H1

0 (D)dπ(y) <∞
}
, (4)

the weak formulation of (1) can be stated as follows: find u ∈ V such that

A(u, v) = F (v), ∀ v ∈ V, (5)

where the bilinear form A : V × V → R and linear functional F : V → R are defined by

A(u, v) :=

∫
Γ

∫
D
a∇u · ∇v dxdπ(y), F (v) :=

∫
Γ

∫
D
fv dxdπ(y). (6)

The ML-SGFEM software computes a Galerkin approximation to u ∈ V by solving the
finite-dimensional problem:

find uX ∈ X s.t. A(uX , v) = F (v), ∀v ∈ X

3

where X ⊂ V has the special ‘multilevel’ structure

X :=
⊕
α∈JP

Hα
1 ⊗ Pα. (7)

To construct X one first has to choose a finite subset JP of finitely supported multi-indices

JP ⊂ J := {α = (α1, α2, α3, . . .) ∈ NN
0 : #supp α <∞}

and then for each α ∈ JP , a (potentially different) finite element space

Hα
1 := span{φαi (x), i = 1, 2, . . . , nα} ⊂ H1

0 (D).

We define Pα := span{ψα(y)} ⊂ L2
π(Γ) where ψα is a multivariate polynomial of the form

ψα(y) =

∞∏
m=1

ψαm(ym), where ψαm has degree αm and ψ0 = 1,

and {ψ0, ψ1, ψ2 . . .} is the family of univariate Legendre polynomials that satisfy∫ 1

−1
ψi(ym)ψj(ym) dπm(ym) = δi,j .

Notice that if αm = 0 then the parameter ym is not ‘active’ in the definition of ψα(y).
With the above construction, the Galerkin approximation has the form

uX(x,y) =
∑
α∈JP

nα∑
i=1

uiαφ
α
i (x)ψα(y). (8)

Note that this is a function of finitely many parameters ym, the number of which depends
on the choice of the set JP .

In order to compute uX ∈ X, one has to solve a linear system Au = b to find the
coefficients uiα in (8). The symmetric matrix A and vectors u,b have blocks associated
with the elements of JP . In particular, each block of A is defined with respect to a pair of
multi-indices α,β ∈ JP as follows

[Aα,β]j,i = A(ψβφ
β
i , ψαφ

α
j), j = 1, . . . , nα, i = 1, . . . , nβ.

When the finite element spaces associated with α and β are different, Aα,β is rectangular.
However, the diagonal blocks are square and invertible. When (3) holds, A is positive
definite. Linear systems are solved using MATLAB’s in-built preconditioned conjugate
gradient (pcg) method. Matrix-vector products are done in a smart way, exploiting the
block structure and the preconditioner is chosen to be the block-diagonal part of A.

Once a space X has been selected and a Galerkin approximation uX ∈ X has been
computed, the energy error ‖e‖A = ‖u− uX‖A where ‖e‖A :=

√
A(e, e) is estimated. The

ML-SGFEM software uses a hierarchical approach. It selects a ‘detail’ space Y ⊂ V such
that X ∩ Y = {0} and estimates ‖e‖A by ‖eY ‖A0 :=

√
A0(eY , eY) where eY ∈ Y satisfies

A0(eY , v) = F (v)−A(uX , v)︸ ︷︷ ︸
Residual R(v)

, ∀ v ∈ Y, (9)

and the bilinear form A0(·, ·) : V × V → R is defined by

A0(u, v) :=

∫
Γ

∫
D
a0∇u · ∇v dxdπ(y). (10)

4

Specifically, it uses a detail space with the structure

Y :=

⊕
α∈JP

Hα
2 ⊗ Pα

︸ ︷︷ ︸

Y1

⊕

⊕
β∈JQ

H ⊗Qβ

︸ ︷︷ ︸

Y2

, Y1 ∩ Y2 = {0}

where for each α ∈ JP , Hα
2 is a finite element space satisfying Hα

1 ∩Hα
2 = {0}, JQ is a

new set of multi-indices such that JP ∩ JQ = ∅, Qβ := span{ψβ(y)} for each β ∈ JQ and
H = Hᾱ

1 for some ᾱ ∈ JP . That is, H is one of the finite element spaces (associated with
some spatial mesh) used in the definition of X.

With the above construction, eY = eY1 + eY2 where eY1 ∈ Y1 and eY2 ∈ Y2 solve
decoupled versions of (9) with v ∈ Y replaced by v ∈ Y1 and v ∈ Y2, respectively. Using
the structure of Y1 and Y2 one can further decompose the estimated error as

‖eY ‖A0 = (‖eY1‖2A0
+ ‖eY2‖2A0

)1/2 =

∑
α∈JP

‖eαY1‖
2
A0

+
∑
β∈JQ

‖eβY2‖
2
A0

1/2

where eαY1 ∈ Y
α

1 := Hα
2 ⊗ Pα and eβY2 ∈ Y

β
2 := H ⊗Qβ are solutions to smaller decoupled

subproblems. The ML-SGFEM software uses the components ‖eαY1‖
2
A0

and ‖eβY2‖
2
A0

of the error
estimator to drive an algorithm that adaptively updates X, and computes a sequence of
Galerkin approximations until ‖eY ‖A0 ≤ TOL where TOL is a user specified tolerance.

Briefly, after computing the estimate ‖eY ‖A0 for the current uX ∈ X, if the stopping
condition is not met, the algorithm identifies ‘important’ subsets J̄P ⊆ JP and J̄Q ⊆ JQ
of multi-indices and then computes

η1 =
∑
α∈J̄P

‖eαY1‖
2
A0
, η2 =

∑
β∈J̄Q

‖eβY2‖
2
A0
.

These quantities are used to estimate the reduction in the square of the energy error
that would be achieved if a new Galerkin approximation uW1 ∈ W1 or uW2 ∈ W2 to the
parametric PDE solution were computed, where we define

W1 := X ⊕

⊕
α∈J̄P

Y α
1

 , W2 := X ⊕

⊕
β∈J̄Q

Y β
2

 . (11)

Notice that computing uW1 ∈ W1 corresponds to improving the current spatial approxi-
mation whereas computing uW2 ∈ W2 corresponds to doing parametric enrichment. The
ML-SGFEM software incorporates two strategies (version 1/version 2) for choosing J̄P
and J̄Q. Details can be found in the references in Section 1. After selecting these subsets
and computing η1 and η2, the software computes the following error reduction ratios

RW1 :=
η1∑

α∈J̄P dim(Y α
1)

, RW2 :=
η2∑

β∈J̄Q dim(Y β
2)
.

If RW1 > RW2 then X is updated by increasing the mesh level numbers for the finite
element spaces Hα

1 associated with multi-indices in J̄P . Otherwise, X is updated by
augmenting JP with J̄Q and initialising the finite element spaces associated with the new
multi-indices as H. The whole process is then repeated until ‖eY ‖A0 ≤ TOL.

5

User Inputs

The set JP is initialized by choosing a number M of parameters to activate and a total
polynomial degree k so that JP contains multi-indices α satisfying

∑M
m=1 αm ≤ k with

αm = 0 for all m > M . The associated Galerkin approximation uX is a polynomial of total
degree ≤ k in y1, . . . , yM . The default setting is to start with M = 1 and k = 1 so that
JP = {0 = (0, 0, 0, . . .), (1, 0, 0, . . .)}. For the finite element spaces Hα

1 , users can select ei-
ther continuous piecewise bilinear (Q1) or biquadratic (Q2) approximation for problems on
two-dimensional spatial domains. In the three-dimensional case, only continuous piecewise
trilinear (Q1) approximation is available. The default choice in all cases is Q1 approxima-
tion. The software uses uniform spatial meshes whose level of refinement is easily specified
via a grid parameter `. For the initial choice of JP , once the type of finite element approx-
imation has been selected, the spaces {Hα

1 ,α ∈ JP } in the definition of X are initialized
with a low value of ` (coarse meshes). As the algorithm proceeds, the set JP is enriched
and the mesh level numbers associated with specific multi-indices are increased as needed.

For problems on two-dimensional spatial domains, if Q1 elements are chosen for Hα
1 ,

then for the error estimation, Hα
2 can be chosen to be either the span of a set of Q1(h/2)

bubble functions (bilinear functions associated with selected nodes on a refined mesh) or
a set of Q2(h) bubble functions (biquadratic functions associated with selected nodes on
the same mesh). Alternatively, if Q2 approximation is chosen for Hα

1 , then the associated
space Hα

2 can be chosen to be the span of a set of Q2(h/2) bubble functions (biquadratic
functions associated with selected nodes on a refined mesh) or a set of Q4(h) bubble
functions (biquartic functions associated with selected nodes on the same mesh). For the
problems on three-dimensional spatial domains, Hα

2 can be chosen to be the span of a
set of Q2(h) bubble functions (triquadratic basis functions associated with selected nodes
associated with the same mesh), or a ‘reduced’ version of this space. The set JQ should
be a subset of the ‘neighbouring’ multi-indices of JP , defined by

J? := {β ∈ J \ JP : β = α + ε(m),α ∈ JP ,m ∈ N},

where ε(m) := (εm1 , ε
m
2 , . . .), ε

m
i := δim. This set contains all multi-indices whose entries are

one higher in every position than all multi-indices in the current set JP . Since there are
infinitely many parameters, it is infeasible to include the whole set. The code uses

JQ := {β ∈ J? : max{supp β} ≤Mmax + ∆M}, (12)

where Mmax is the index of the highest activated parameter in JP and ∆M ∈ N is chosen
by the user to control the maximum number of additional parameters to activate.

4 Sample Session

ML-SGFEM has four in-built test problems: TP1, TP2-slow/fast, TP3 and TP4-slow/fast.
These problems differ in the choice of spatial domain D ⊂ Rd, the source term f(x) and
crucially, the diffusion coefficient a(x,y). See Appendix A for the specification of each test
problem. TP3 and TP4 are defined on two-dimensional spatial domains (d = 2), whereas
both TP1 and TP2 can be solved on either a two or a three-dimensional spatial domain.
For TP2 and TP4, the option slow/fast relates to the algebraic rate of decay of the norms
of the coefficients am(x) in (2). To solve one of the test problems, the user simply needs to
run the main driver ML adapt SGFEM pc.m (Windows) or ML adapt SGFEM.m (Mac/Linux).
A sample session for TP2-slow on a two-dimensional spatial domain is illustrated below.
Default values are set for all required inputs for all test problems and can be selected
simply by hitting the return key. Below, the stopping tolerance for the estimated error is
chosen to be TOL=3e-3.

6

Choose dimension of spatial domain: 2/3 (2D/3D) (default: 2D) : 2

Specification of reference stochastic diffusion problem.

Choose specific example

1 Square domain [-1,1]x[-1,1], analytic KL expansion, non-constant source

2 Square domain [0,1]x[0,1], Eigel synthetic random coefficient, constant source

3 Square domain [0,1]x[0,1], Powell synthetic random coefficient, constant source

4 L-shaped domain, Eigel synthetic random coefficient, constant source

: 2

1 file(s) copied.

1 file(s) copied.

Setting up Eigel synthetic random coefficient expansion

--slow/fast coefficient decay 1/0 (default slow) :

Specify initial SGFEM approximation space

--No. of parameters to activate at first step (default is 1) :

--Total polynomial degree for parametric approximation at first step (default is 1) :

--Choose Q1/Q2 spatial approximation 1/2? (default Q1) :

--Coarse grid parameter: 3 for underlying 8x8 grid (default is 16x16) :

Desired energy error tolerance (1.5e-3) : 3e-3

Specify approximation space for error estimator

--Spatial error approximation space Q2(h)/Q1(h/2), 1/2? (default Q2(h)) :

--Max no. extra parameters to activate in parametric space for

error estimator (default is 5) :

Choose the adaptive strategy 1/2 (default version 1) :

Printing, plotting and saving

--Display diagnostics on screen at each adaptive step? yes/no (1/0):

--Plot estimated errors and convergence rates? yes/no (1/0):

--Compute reference errors and plot effectivity indices? yes/no (1/0):

--Plot mean/variance of final approximation? yes/no (1/0):

--Display info about evolution of parametric space? yes/no (1/0):

--Save ML-SGFEM results? yes/no (1/0) (default yes):

If the user chooses to ‘Display diagnostics’, the following information is printed to the
screen, summarising progress and the quality of the approximation at each step.

Constructing SGFEM approximation ...

===

Iteration = 1.

===

Grid_levels No_of_terms

___________ ___________

4 2

--

No of activated variables = 1.

7

Constructing G and K matrices and RHS ...

Solving linear system using PCG ...

completed

PCG converged to the desired tolerance within 11 iterations

completed

Computing reference energy error ... completed

Solution energy = 1.89178868e-01.

Reference energy error = 1.8865e-02.

Computing spatial error estimate ... completed

Spatial error estimate = 1.4534e-02.

Computing parametric error estimate ... completed

Parametric error estimate = 1.0300e-02.

Cumulative time = 0.16 seconds.

Total energy error estimate = 1.7814e-02.

Effectivity index = 0.94.

===

Iteration = 2.

===

Grid_levels No_of_terms

___________ ___________

4 1

5 1

--

No of activated variables = 1.

Constructing G and K matrices and RHS ...

Solving linear system using PCG ...

completed

PCG converged to the desired tolerance within 12 iterations

completed

Computing reference energy error ... completed

Solution energy = 1.89577248e-01.

Reference energy error = 1.4317e-02.

Computing spatial error estimate ... completed

Spatial error estimate = 8.4084e-03.

Computing parametric error estimate ... completed

Parametric error estimate = 1.0288e-02.

Cumulative time = 0.30 seconds.

Total energy error estimate = 1.3287e-02.

Effectivity index = 0.93.

8

Figure 1: Mean (top) and variance (bottom) of the ML-SGFEM solution computed in the
sample session for TP2-slow with TOL=3e-3.

We omit the output for iterations 3–8. For this test problem, with the chosen settings,
the method converges to the chosen tolerance in 9 iterations.

===

-------------- Convergence achieved! --------------

===

Elapsed time is 3.101121 seconds.

Reference error = 3.0571e-03.

Estimated error = 2.7453e-03.

Total iterations = 9.

Total #DOF = 25006.

final_Grid_levels No_of_terms

_________________ ___________

4 9

5 3

6 1

7 1

Total no. of activated variables = 6.

Max expectation = 7.5810e-02.

Max variance = 5.0144e-05.

In the above session, the adaptive solution algorithm builds an approximation space
using 14 (9 + 3 + 1 + 1) multi-indices, each one representing a different parametric basis
polynomial. Nine of the associated spatial coefficients (here, using Q1 approximation) are
allocated finite element meshes of level 4 (16×16 grid), three are allocated meshes of level
5 (32 × 32 grid), one is allocated a mesh of level 6 (64 × 64 grid) and one is allocated
a mesh of level 7 (128 × 128 grid). The dimension of the final approximation space is
NDOF = 25, 006.

9

102 103 104 105

#DOF

10-3

10-2

Convergence of Estimated Energy Error
dof-0.47

reference
total estimated error
Q2(h) spatial estimated error
parametric estimated error

2 4 6 8
Algorithm step

0.9

0.92

0.94

Estimated Effectivity Indices

Figure 2: (Left) Plots of ‖e‖A (black), computed with respect to a highly accurate reference
solution, the total estimated error ‖eY ‖A0 (pink), the estimated spatial error ‖eY1‖A0

(blue) and estimated parametric error ‖eY2‖A0 (green), against the number of degrees of
freedom associated with the approximation space, in the sample session for TP2-slow with
TOL=3e-3. (Right) Plot of the associated effectivity index at each step.

1 2 3 4 5 6 7 8 9
Algorithm step

0

2

4

6

8

10

12

14
No of activated parameters
No of parametric basis polynomials

Figure 3: Number of parametric basis polynomials (red) and number of activated param-
eters (blue) at each adaptive step in the sample session for TP2-slow with TOL=3e-3.

The mean and variance of the final approximation are plotted in Figure 1. Figure
2 shows the total estimated energy error at each step, as well as the distinct spatial and
parametric error estimates. The error with respect to an accurate reference solution is also
plotted for comparison. Both the reference and estimated errors are observed to converge

at very close to the optimal theoretical rate for this test problem, which is N
−1/2
DOF . This

is the rate that one would expect to achieve if one solved the analogous parameter-free
problem with Q1 finite elements. Figure 2 shows that the estimated effectivity index
(ratio of the estimated and reference energy errors) stays close to one at each step. This
gives confidence that the error estimator is highly accurate. Figure 3 shows how the
parametric approximation space evolves. Initially, we have only one active parameter and
two parametric basis polynomials but when the stopping condition is met, there are 14
parametric basis polynomials and six active parameters.

10

A Appendix: Test Problems

Here we describe the four test problems included in the ML-SGFEM software.

TP1 (Karhunen–Loève expansion). In this problem, the spatial domain is D = (−1, 1)d

with d = 2 or 3 and the diffusion coefficient a(x,y) is chosen to be

a(x,y) = 1 + σ
√

3

∞∑
m=1

√
λmφm(x)ym, ym ∈ [−1, 1]

where (λm, φm) are the eigenpairs of an integral operator associated with the covari-
ance function

Cov[a](x,x′) = σ2 exp

(
−

d∑
i=1

‖xi − x′i‖1
`i

)
, x,x′ ∈ D,

where σ is the standard variation and `i, i = 1, 2, 3 are the correlation lengths in
each dimension. The right hand side function f is chosen to be

f(x) =

{
1
8(2− x2

1 − x2
2) if d = 2

1
8(3− x2

1 − x2
2 − x2

3) if d = 3
.

Note that choosing σ > 0.15 (when d = 2) or σ > 0.1 (when d = 3) may lead
to a discrete problem that is not well-posed (depending on the chosen tolerance).
Warning: if `i is chosen to be too small relative to the length of the domain in the
ith dimension, a very high number of parameters will need to be activated to meet
even modest error tolerances and significant computational resources will be required.
Due to the slow decay of the eigenvalues, this is a highly challenging problem!

TP2 In this problem, D = (0, 1)d with d = 2 or 3 and f(x) = 1. The diffusion coefficient
a(x,y) has the form (1) with a0(x) = 1 and the functions am(x) are tensor products
of one-dimensional Fourier modes with increasing total order. That is

am(x) :=

{
cm cos

(
2πβ1

mx1

)
cos
(
2πβ2

mx2

)
ym for m ∈ N, if d = 2,

cm cos
(
2πβ1

mx1

)
cos
(
2πβ2

mx2

)
cos
(
2πβ3

mx3

)
ym for m ∈ N, if d = 3.

In the d = 2 case, β1
m and β2

m are defined as follows:

β1
m = m− km(km + 1)/2, β2

m = km − β1
m

where km = b−1/2 + (1/4 + 2m)1/2c. The d = 3 case is similar. The coefficients are
chosen as cm = Am−σ where either

– A = 0.547 and σ = 2 (referred to as TP2-slow), or

– A = 0.832 and σ = 4 (referred to as TP2-fast).

TP3 In this problem, D = (0, 1)2 and f(x) = 1 and the diffusion coefficient is

a(x,y) = 2 +

∞∑
i=0

∞∑
j=0

√
λiλjφi(x1)φj(x2)yij , yij ∈ [−1, 1],

where λj = 1
2 exp

(
−πj2`2

)
for j ∈ N0, φ0(xk) = 1 and φj(xk) =

√
2 cos(jπxk) for

k = 1, 2 and j ∈ N. The above expression can be equivalently written with a single
sum as in (1). It is not recommended to choose ` < 0.8, otherwise the discrete
problems encountered may not be well-posed.

TP4 This is the same as TP2 (with both fast and slow options) but is solved on the
L-shaped spatial domain D = [−1, 1]2 \ [−1, 0)2.

11

B Appendix: Directory Structure

All the necessary files for the ML-SGFEM software are contained in the main directory
stoch diffusion multilevel and its nine subdirectories

..../stoch diffusion multilevel

datafiles

derivatives and shape functions

error estimation

Gaussian quadrature

grid files

linear algebra tools

output scripts

SGEM approximation

test problems setup

The main directory also contains a few additional auxiliary files required to set up the tool-
box and run the test problems. In particular, the file gohome.m needs to be edited before
running the code, and setpath.m needs to be executed at the start of each new session.
Details of the license under which this code is distributed can be found in readme.m. By
downloading this code, you agree to abide by the terms of this license.

The subdirectory datafiles contains any .mat files saved after the execution of a
test problem and the subdirectory derivatives and shape functions contains functions
associated with Q1 (bi/trilinear), Q2 (bi/triquadratic) and Q4 (biquartic) finite element
shape functions and their derivatives. See Table 1 for a full listing.

Shape functions and their derivatives

deriv evaluates derivatives of bilinear shape functions
deriv3D evaluates derivatives of trilinear shape functions
qderiv evaluates derivatives of biquadratic shape functions
qderiv3D evaluates derivatives of triquadratic shape functions
qqderiv evaluates derivatives of biquartic shape functions
qqshape evaluates biquartic shape functions
qshape evaluates biquadratic shape functions
qshape3D evaluates triquadratic shape functions
shape evaluates bilinear shape functions
shape3D evaluates trilinear shape functions
vderiv evaluates derivatives of bilinear shape functions (vectorized version)
vderiv3D evaluates derivatives of trilinear shape functions (vectorized version)
vshape3D evaluates trilinear shape functions (vectorized version)
vqderiv evaluates derivatives of biquadratic shape functions (vectorized version)
vqderiv3D evaluates derivatives of triquadratic shape functions (vectorized version)
vqqderiv evaluates derivatives of biquartic shape functions (vectorized version)
vqqshape evaluates biquartic shape functions (vectorized version)
vqshape evaluates biquadratic shape functions (vectorized version)
vqshape3D evaluates triquadratic shape functions (vectorized version)
vshape evaluates bilinear shape functions (vectorized version)

Table 1: MATLAB function files in the subdirectory derivatives and shape functions.

The subdirectory error estimation contains files for performing a posteriori error

12

estimation and is organised as follows.

.../stoch diffusion multilevel/error estimation

q1 error estimation

parametric

spatial

2D error estimation

3D error estimation

q2 error estimation

parametric

spatial

2D error estimation

A full listing of all the files contained in these subdirectories is given in Tables 2 and 3.

.../error estimation Main drivers for error estimation

ML adapt diffpost main routine for a posteriori error estimation
adapt stoch gmatrices error augment G matrices with new parameters
genindex builds index sets for multivariable polynomials

.../q1 error estimation/parametric Parametric error estimation

parametric error est a posteriori error estimation for Q1 approximation
parametric error est3D a posteriori error estimation for Q1 approximation in 3D
stoch new indset multi augments the multi-index set

.../q1 error estimation/spatial 2D Spatial error estimation

.../2D error estimation

q1 error lhs np computes LHS and 1st term on RHS of (9)
q1 error rhs np main function for computing 2nd term in RHS of (9)
q1 error rhs np equal computes 2nd term on RHS of (9) for same meshes
q1 error rhs np nonequal 1 computes 2nd term on RHS of (9) for different meshes
q1 error rhs np nonequal 2 computes 2nd term on RHS of (9) for different meshes
spatial error est error estimation using Q2 bubble functions
spatial error est bilinears error estimation using Q1(h/2) bubble functions

.../3D error estimation 3D Spatial error estimation

fullq2 spatial error est3D error estimation using Q2 bubble functions
q1 3Dfullq2 error lhs np computes LHS and 1st term on RHS of (9)
q1 3Dfullq2 error rhs np main function for computing 2nd term on RHS of (9)
q1 3Dfullq2 error rhs np equal computes 2nd term on RHS of (9) for same meshes
q1 3Dreducedq2 error lhs np computes LHS and 1st term on RHS of (9)
q1 3Dreducedq2 error rhs np main function for computing 2nd term on RHS of (9)
q1 3Dreducedq2 error rhs np equal computes 2nd term on RHS of (9) for same meshes
q1 fullq2 error rhs np nonequal 1 computes 2nd term on RHS of (9) for different meshes
q1 fullq2 error rhs np nonequal 2 computes 2nd term on RHS of (9) for different meshes
q1 reducedq2 error rhs np nonequal 1 computes 2nd term on RHS of (9) for different meshes
q1 reducedq2 error rhs np nonequal 2 computes 2nd term on RHS of (9) for different meshes
reducedq2 spatial error est3D error estimation with reduced Q2 bubble functions

Table 2: MATLAB function files in subdirectory error estimation and subdirectories of
error estimation/q1 error estimation.

13

.../q2 error estimation/parametric Parametric error estimation

parametric q2 error est a posteriori error estimation for Q2 approximation

.../q2 error estimation/spatial 2D Spatial error estimation

.../2D error estimation

q2 error lhs np computes LHS and the 1st term of the RHS of (9)
q2 error rhs np main function for computing 2nd term on RHS of (9)
q2 error rhs np equal computes 2nd term on RHS of (9) for same meshes
q2 error rhs np nonequal 1 computes 2nd term on RHS of (9) for different meshes
q2 error rhs np nonequal 2 computes 2nd term on RHS of (9) for different meshes
q2 spatial error est driver for error estimation using Q4(h) bubble functions
spatial error est biquadratics driver for error estimation using Q2(h/2) bubble functions

Table 3: MATLAB files in subdirectories of error estimation/q2 error estimation.

The subdirectory Gaussian quadrature contains MATLAB functions for performing
Gauss quadrature in 1D, 2D and 3D. These files are listed in Table 4.

Gaussian quadrature rules

gausspoints oned constructs one-dimensional Gauss rule
gausspoints threed constructs two dimensional tensor product Gauss rule
gausspoints twod constructs three-dimensional tensor product Gauss rule

Table 4: MATLAB function files in subdirectory Gaussian quadrature.

The subdirectory grid files contains MATLAB functions related to spatial grids,
such as for grid generation in 2D and 3D, performing iso-parametric transformations and
computing connectivity arrays etc. These files are listed in Table 5.

Grid files

boundary transform3D squ vec implements 3D inverse isoparametric transformation
boundary transform squ vec implements inverse isoparametric transformation
fine el retrieval returns numbering of fine elements coarse elements
grid data generates square or L-shaped domain
grid data3D generates cube domain
q1 error connectivity array generates Q2 connectivity array excluding Q1 nodes
q2 error connectivity array generates Q4 connectivity array excluding Q2 nodes

Table 5: MATLAB function files in subdirectory grid files.

The subdirectory linear algebra tools contains MATLAB functions for performing
matrix vector products and applying preconditioning. These files are listed in Table 6.
Linear systems are solved using the in-built MATLAB function pcg.

Linear algebra files

adapt multilevel precond inv applies A−1
0 (mean-based preconditioner) to a vector

multilevel matvec prod computes matrix-vector products efficiently
multilevel matvec prod nomean computes matrix vector products excluding mean term

Table 6: MATLAB function files in subdirectory linear algebra tools.

14

The subdirectory output scripts contains MATLAB functions for post-processing
and plotting information about the ML-SGFEM solution and the associated estimated
error at each adaptive step. These files are listed in Table 7.

Post-processing and plotting files

convergence plots plot errors and effectivity indices
cprintf displays styled formatted text in command window
multi stats interpolates 2D spatial functions to the finest mesh
multi stats3D interpolates 3D spatial functions to finest mesh
stoch energy error computes reference energy error

Table 7: MATLAB function files in subdirectory output scripts.

The subdirectory SGFEM approximation contains files for computing the ML-SGFEM
solution and is organised as follows

.../stoch diffusion multilevel/SGFEM approximation

q1 FEM approximation

q2 FEM approximation

The files contained in these directories are listed in Table 8.

.../SGFEM approximation Main functions for SGFEM approximation

adapt stoch gmatrices generates parametric G-matrices
adaptive multilevel SGFEM main function for computing ML-SGFEM approximation

in 2D using Q1 or Q2 elements
adaptive multilevel SGFEM3D main function for computing ML-SGFEM approximation

in 3D using Q1 or Q2 elements
enrichment indices constructs suitable multi-index sets JP , JQ
u gal reconstruct splits the solution into pieces

.../q1 FEM approximation Q1 SGFEM approximation files

mu nu stiffness generates stiffness matrix for bilinear elements
mu nu stiffness3D generates stiffness matrix for trilinear elements
mu nu stiffness3D equal generates stiffness matrix for same levels (trilinear)
mu nu stiffness3D nonequal generates stiffness matrix for different levels (trilinear)
mu nu stiffness equal generates stiffness matrix for same levels (bilinear)
mu nu stiffness nonequal generates stiffness matrix for different levels (bilinear)

.../q2 FEM approximation Q2 SGFEM approximation files

mu nu q2 stiffness generates stiffness matrix for biquadratic elements
mu nu q2 stiffness equal generates stiffness matrix for same levels (biquadratic)
mu nu q2 stiffness nonequal generates stiffness matrix for different levels (biquadratic)

Table 8: MATLAB files in subdirectory SGFEM approximation and its subdirectories.

Finally, the subdirectory test problems setup contains the main drivers and the files
needed to set up the test problems. These files are listed in Table 9.

15

Problem set up files and main drivers

ML adapt SGFEM set up reference test problems (Mac/linux users)
ML adapt SGFEM pc set up reference test problems (Windows users)
stoch adapt ML SGFEM diff solves (1) using adaptive ML-SGFEM algorithm
stoch adapt ML SGFEM diff3D solves (1) in 3D using adaptive ML-SGFEM algorithm
struct init initializes necessary data structures
user inputs asks user to specify all required inputs
stoch coeff ex2 m specifies diffusion coefficient for TP1
stoch rhs ex2 specifies right hand side for TP1
stoch coeff3D ex2 m specifies diffusion coefficient for 3D version of TP1
stoch rhs ex2 3D specifies right hand side for 3D version of TP1
stoch unit rhs specifies right hand side for TP2/TP4-slow/fast and TP3

stoch unit rhs3D specifies right hand side for 3D version of TP2 slow/fast

stoch coeff ex5 m specifies diffusion coefficient for TP2 and TP4

stoch coeff3D ex5 m specifies diffusion coefficient for TP2
stoch coeff ex6 m specifies diffusion coefficient for TP3
stoch gauss coeff m evaluates 2D spatial coefficients at Gauss points
stoch gauss coeff3D m evaluates 3D spatial coefficients at Gauss points

Table 9: MATLAB function files in subdirectory test problems setup.

16

